版权声明:本文为博主原创文章,如果转载请给出原文链接:http://doofuu.com/article/4156205.html
LRU 缓存机制 设计和实现一个 LRU(最近最少使用)缓存数据结构,使它应该支持一下操作:get 和 put。 get(key) - 如果 key 存在于缓存中,则获取 key 的 value(总是正数),否则返回 -1。 put(key,value) - 如果 key 不存在,请设置或插入 value。当缓存达到其容量时,它应该在插入新项目之前使最近最少使用的项目作废。
python版本:
class LRUCache(object): def __init__(self, capacity): """ :type capacity: int """ self.cache = {} self.keys = [] self.capacity = capacity def visit_key(self, key): if key in self.keys: self.keys.remove(key) self.keys.append(key) def elim_key(self): key = self.keys[0] self.keys = self.keys[1:] del self.cache[key] def get(self, key): """ :type key: int :rtype: int """ if not key in self.cache: return -1 self.visit_key(key) return self.cache[key] def put(self, key, value): """ :type key: int :type value: int :rtype: void """ if not key in self.cache: if len(self.keys) == self.capacity: self.elim_key() self.cache[key] = value self.visit_key(key) def main(): s = [["put","put","get","put","get","put","get","get","get"],[[1,1],[2,2],[1],[3,3],[2],[ 4,4],[1],[3],[4]]] obj = LRUCache(2) l=[] for i,c in enumerate(s[0]): if(c == "get"): l.append(obj.get(s[1][i][0])) else: obj.put(s[1][i][0], s[1][i][1]) print(l) if __name__ == "__main__": main()
C++版本:
class LRUCache{ public: LRUCache(int capacity) { cap = capacity; } int get(int key) { auto it = m.find(key); if (it == m.end()) return -1; l.splice(l.begin(), l, it->second); return it->second->second; } void set(int key, int value) { auto it = m.find(key); if (it != m.end()) l.erase(it->second); l.push_front(make_pair(key, value)); m[key] = l.begin(); if (m.size() > cap) { int k = l.rbegin()->first; l.pop_back(); m.erase(k); } } }
Erlang版本:
%%---------------------------------------------------- %% LRU缓存 %%---------------------------------------------------- -module(lru_cache). -behaviour(gen_server). -export([start_link/1]). -export([init/1, handle_call/3, handle_cast/2, handle_info/2, terminate/2, code_change/3]). -export([ insert/2 ,delete/2 ,lookup/2 ,info/0 ,resize/2 ,clean/1 ,member/2 ] ). -record(cache_cfg, { %% 缓存名称 name :: atom() %% 最大数量,=0表示不限制数量 ,max_size = 0 :: non_neg_integer() %% 缓存对象的主键位置 ,keypos :: pos_integer() } ). -record(state, { cache_names = [] :: [atom()] } ). -define(CHECK_LRU_CACHE_INTERVLAL, (30*1000)). %% 检查LRU缓存的间隔时间(毫秒) -ifdef(debug). -define(ROLE_CACHE_MAX_NUM, 1). -else. -define(ROLE_CACHE_MAX_NUM, 1000). -endif. %% ---------------------------------------------------- %% 外部接口 %% ---------------------------------------------------- %% @doc 启动 start_link() -> gen_server:start_link({local, ?MODULE}, ?MODULE, [], []). %% @doc 写入缓存 insert(CacheName, Value) -> NewTs = ts(), Key = get_key(CacheName, Value), ets:insert(CacheName, {Key, Value, NewTs}), ok. %% @doc 删除缓存 delete(CacheName, Key) -> ets:delete(CacheName, Key), ok. %% @doc 读取缓存 %% (lookup不影响ts) -spec lookup(CacheName :: atom(), Key :: term()) -> {ok, term()} | false. lookup(CacheName, Key) -> case ets:lookup(CacheName, Key) of [{Key, Value, _Ts}] -> {ok, Value}; [] -> false end. %% @doc 判断缓存中是否存在 -spec member(CacheName :: atom(), Key :: term()) -> boolean(). member(CacheName, Key) -> case ets:member(CacheName, Key) of true -> true; false -> false end. %% @doc 更新缓存最大记录数 resize(CacheName, MaxSize) -> gen_server:cast(?MODULE, {resize, CacheName, MaxSize}). %% @doc 清除缓存和ts clean(CacheName) -> ets:delete_all_objects(CacheName), ok. %% @doc 显示目前缓存信息 info() -> gen_server:cast(?MODULE, info). %% ---------------------------------------------------- %% 内部处理 %% ---------------------------------------------------- init([]) -> ?INFO("[~w] 正在启动...", [?MODULE]), process_flag(trap_exit, true), {ok, State} = do_init(), erlang:send_after(?CHECK_LRU_CACHE_INTERVLAL, self(), check), ?INFO("[~w] 启动完成", [?MODULE]), {ok, State}. handle_call(_Request, _From, State) -> {noreply, State}. handle_cast({resize, CacheName, MaxSize}, State) -> case get({cfg, CacheName}) of Cfg = #cache_cfg{max_size = OldSize} -> put({cfg, CacheName}, Cfg#cache_cfg{max_size = MaxSize}), ?INFO("LRU缓存[~w]的MaxSize变化: ~w => ~w", [CacheName, OldSize, MaxSize]); _ -> ?ERR("找不到[~w]的LRU缓存配置", [CacheName]) end, {noreply, State}; handle_cast(info, State = #state{cache_names = L}) -> ?INFO("LRU缓存信息:"), lists:foreach(fun(CacheName) -> #cache_cfg{keypos = KeyPos, max_size = MaxSize} = get({cfg, CacheName}), ?INFO("[~w] Ets Size=~w, keypos=~w, MaxSize=~w", [CacheName, ets:info(CacheName, size), KeyPos, MaxSize]) end, L), {noreply, State}; handle_cast(_Msg, State) -> {noreply, State}. handle_info(check, State = #state{cache_names = L}) -> lists:foreach(fun(CacheName) -> do_check(CacheName) end, L), erlang:send_after(?CHECK_LRU_CACHE_INTERVLAL, self(), check), {noreply, State}; handle_info(_Info, State) -> {noreply, State}. terminate(_Reason, _State) -> ?INFO("[~w] 正在关闭...", [?MODULE]), ?INFO("[~w] 关闭完成", [?MODULE]), ok. code_change(_OldVsn, State, _Extra) -> {ok, State}. %% ---------------------------------------------------- %% 私有函数 %% ---------------------------------------------------- do_init() -> put(cache_names, []), %% 角色缓存(离线) create(role_cache, [public, named_table, set, compressed, {keypos, get_keypos(role_cache)}, {write_concurrency, true}], ?ROLE_CACHE_MAX_NUM), {ok, #state{cache_names = erase(cache_names)}}; do_init() -> {ok, #state{}}. get_keypos(role_cache) -> #role.id; get_keypos(account_id_index) -> 1. get_key(CacheName, Value) -> KeyPos = get_keypos(CacheName), erlang:element(KeyPos, Value). %% 创建缓存 %% ets表的结构统一为:{Key, Object, Ts} create(CacheName, CacheOpts, MaxSize) -> {ok, NewOpts, KeyPos} = deal_opts(CacheOpts, []), ets:new(CacheName, NewOpts), Cfg = #cache_cfg{name = CacheName, max_size = MaxSize, keypos = KeyPos}, put({cfg, CacheName}, Cfg), put(cache_names, [CacheName | get(cache_names)]), ok. deal_opts([], _) -> false; deal_opts([{keypos, Pos} | T], Result) -> {ok, lists:concat([Result, T, [{keypos, 1}]]), Pos}; deal_opts([H | T], Result) -> deal_opts(T, [H|Result]). %% 检查缓存大小是否需要调整 %% 检查缓存大小是否需要调整 do_check(CacheName) -> %% ?DEBUG("正在检查LRU缓存:~w", [CacheName]), #cache_cfg{max_size = MaxSize} = get({cfg, CacheName}), Keys = util:get_all_ets_key(CacheName), Len = length(Keys), case Len > MaxSize of true -> L = lists:foldl(fun(Key, Result) -> case catch ets:lookup_element(CacheName, Key, 3) of OldTs = {_, _, _} -> [{OldTs, Key} | Result]; _ -> Result end end, [], Keys), L1 = lists:keysort(1, L), {L2, _L3} = lists:split(Len-MaxSize, L1), lists:foreach(fun({_Ts, Key}) -> ets:delete(CacheName, Key) end, L2), ?DEBUG("清理缓存[~w], ~w => ~w", [CacheName, Len, ets:info(CacheName, size)]); false -> ignore end, ok. %% 生成操作时间戳 ts() -> os:timestamp().
共有 0 条评论 - LRU缓存机制设计与实现(Python、C++、Erlang)